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Abstract—This note is concerned with the static output 
feedback (SOF) H-infinity controller design for linear time-
invariant systems. A sufficient bilinear matrix inequality 
(BMI) condition is developed for finding a stabilizing static 
output feedback H-infinity controller. For the first time, a 
novel cone complementary linearization approach within the 
context of linear matrix inequalities (LMI) is proposed to 
investigate the feasibility of the stabilizing controller synthesis 
along with a minimized H-infinity attenuation rate. The 
proposed method requires neither any apriori assumption 
generally made on the input/output matrices nor any 
application of a coordinate transformation. An example is 
presented for the application of the proposed scheme. 

Keywords—static output feedback, cone complementary, 
linear matrix inequalities 

I. INTRODUCTION 
The static output feedback control (SOF) approach 

receives quite many attraction, thus it is often addressed in 
control system design. In general, it may often not be very 
easy to access the inner structure of the plant under 
consideration in order to make an adjustment from the inside. 
Therefore, a feedback loop which takes the system output 
into a consideration is utilized to accommodate the 
performance of the system such that it fits to a desired output 
response. Output feedback is also quite reasonable to apply 
in practice under some circumstances where it is impossible 
to utilize state-feedback simply because the states can not be 
measured or at least some part of the state information is not 
accessible for some reasons. Though advantageous from this 
point of view, unlike state-feedback, output feedback control 
problem is a difficult issue since the synthesis conditions of 
this problem are non-convex and often appear in the form of 
bilinear matrix inequality (BMI) which makes it hard to find 
feasible solution set, say, via a linear matrix inequality (LMI) 
solver. 

The H∞  control problem was studied in [1] for linear 
uncertain systems. Unlike a Riccati inequality based 
approach, the negativeness of a matrix was taken into 
consideration in [1]. Concerning the linear uncertain 
continuous-time systems, an H∞  controller was developed in 

[3] based on a two-stage LMI approach. In the first stage, a 
parameter dependent state-feedback controller was obtained 
to be utilized for synthesizing the robust output feedback H∞  
dynamic controller [3]. Some sufficient dilated LMI 
conditions have been derived in [4] for the robust H∞  SOF 
stabilization of linear uncertain continuous-time systems. 
The synthesis of a convex SOF controller for linear uncertain 
systems was introduced in [5] and the proposed method has 
also been extended to the case of H∞  control design. In [6], 
the H∞  control problem was investigated for linear 
continuous-time systems by employing a two-step LMI 
based procedure for an achievement of a desired disturbance 
attenuation performance and the sensitivity performance 
simultaneously. The SOF H∞  controller design has been 
investigated in [7] for linear uncertain systems. The 
developed scheme has given LMI conditions which led to 
less conservative results [7]. Based on a new structure for the 
auxiliary matrix variables yielding a relaxation on the LMI 
conditions, the robust reduced-order controller design has 
been presented in [8]. In order to penalise the number of 
nonzero entries of the SOF gain, an extra term has been 
incorporated in [9] into the optimisation objective function 
and the structured H2  and H∞  SOF problem has been 
solved accordingly. Finally, utilizing a descriptor form of 
system representation which allows to introduce free slack 
matrices in the design condition, a robust SOF H∞  control 
has been developed for linear uncertain continuous-time 
systems [10]. 

This note takes into account the SOF H∞  control 
problem for linear time-invariant continuous-time systems. 
The proposed method relies on transforming the BMI 
condition into a new BMI form with the use of completing 
the cross terms to squared quadratic terms. This novel 
approach allows to formulate the achievement of a 
prospective feasible solution set through some well-known 
linearization techniques. To the best of author’s knowledge, 
for the very first time, the so-called cone complementary 
nonlinear minimization method is thus applied for designing 
an SOF H∞  controller. An example is demonstrated to show 
the application of the proposed scheme. 
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II. PROBLEM STATEMENT 
We take into account a class of linear time-invariant 
continuous-time control system defined in (1): 

!x(t) = Ax(t)+Bww(t)+Buu(t)
z(t) =Czx(t)+Dww(t)+Duu(t)
y(t) =Cyx(t)+Eww(t)

  (1) 

where x(t)∈ℜn , w(t)∈ℜq  is an exogeneous noise signal 
in L2 ∈ 0,∞[ ) , u(t)∈ℜm  is the control signal, z(t)∈ℜr  is 

the regulated output, y(t)∈ℜp  is the measured output. The 
matrices A , Bw , Bu , Cz , Dw  are system matrices which are 
all konown. A SOF control law is chosen for system (1) as 
follows: 

u(t) = Fy(t)    (2) 
where F ∈ℜm×p  is a suitably chosen SOF gain matrix. The 
dynamics of the system can be obtained by substituting (2) 
into (1) as 

!x(t) = Acx(t)+Bwcw(t)
z(t) =Czcx(t)+Dwcw(t)
y(t) =Cyx(t)+Eww(t)

   (3) 

where Ac = A+BuFCy , Bwc = Bw +BuFEw , Czc =Cz +DuFCy , 
Dwc = Dw +DuFEw . The objective of the SOF H∞  control 
problem can be stated as achieving the goal of finding an 
H∞  controller of the form given in (2) such that the two 
conditions described in [11] are fulfilled accordingly. 

III. MAIN RESULTS  
A novel matrix inequality condition is presented for finding 
an SOF H∞  controller summarized. 

Theorem 1. Given a positive scalar γ > 0 , if the matrices 
0 < PT = P ∈ℜn×n , 0 < ZT = Z ∈ℜm×m , and a matrix 
F ∈ℜm×p  exist such that 

Σ =

Σ11 Σ12 Σ13 Σ14 Σ15 Σ16 0
* −γ 2Ιq 0 0 Σ25 0 Σ27

* * −Ιn 0 0 0 0
* * * −Ιm 0 0 0
* * * * −Ιr 0 0
* * * * * −Z 0
* * * * * * −Z −1

$

%

&
&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)
)

< 0  (4) 

where Σ11 = −A
TA−P Ιn +BuBu

T( )P , Σ12 = PBw , 

Σ13 = A
T +P , Σ14 = PBu +Cy

TFT , Σ15 =Cz
T +Cy

TFTDu
T , 

Σ16 = PBu , Σ25 = Dw
T +Ew

TFTDu
T , Σ27 = Ew

TFT  and (*) denotes 
the terms due to symmetry and Ιn  is an identity matrix of n  
by n , then the controller in (2) with F  becomes an SOF 
H∞  controller for system (1), (2). 

Proof. We shall choose a candidate Lyapunov function as 
follows 

V (x(t)) = xT (t)Px(t)     (5) 

We compute !V (x(t))  as 

!V (x(t)) = 2xT (t)P!x(t)
= 2xT (t)P Acx(t)+Bwcw(t)[ ]
= xT (t) PAc + Ac

TP( ) x(t)+ 2xT (t)PBwcw(t)

 (6) 

then we calculate the following quadratic expression in (7) 

!V (x(t))+ zT (t)z(t)−γ 2w(t)w(t)
= xT (t) PAc + Ac

TP+Czc
TCzc( ) x(t)

+ 2xT (t) PBwc +Czc
T Dwc( )w(t)

+wT (t) −γ 2Ιq +Dwc
T Dwc( )w(t)

= χ T (t)Ω0χ (t)

 (7) 

where χ (t) = xT (t) wT (t)!
"#

$
%&
T

 and 

Ω0 =
PAc + Ac

TP+Czc
TCzc PBwc +Czc

T Dwc

* −γ 2Ιq +Dwc
T Dwc

$

%

&
&

'

(

)
)

.  

If the following matrix inequality 

Ω0 < 0      (8) 

holds true, then we obtain 

!V (x(t))+ zT (t)z(t)−γ 2w(t)w(t) = χ T (t)Ω0χ (t)< 0  (9) 

We now consider PAc + Ac
TP  in Ω0  as follows 

PAc + Ac
TP = PA+ ATP+PBuFCy + PBuFCy( )

T

= −ATA−PP+ A+P( )T A+P( )

−PBuBu
TP+ PBu +Cy

TFT( )
T
PBu +Cy

TFT( )
−Cy

TFTCyF

 (10) 

We shall now substitute (10) into (8) and apply Schur 
complement to obtain 

Ω1 < 0     (11) 

where Ω1 =

Σ11 Ω12 Σ13 Σ14 Σ15
* −γ 2Ιq 0 0 Σ25

* * −Ιn 0 0
* * * −Ιm 0
* * * * −Ιr

%

&

'
'
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'
'
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'
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*
*
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*
*

 with 

Ω12 = PBw +PBuFEw . In order to linearize the matrix 
inequality in (11) with respect to the SOF gain matrix F  we 
shall reexpress (11) via decomposition as follows 
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Ω1 =Ψ +ΠTΘ+ΘTΠ < 0    (12) 

where Ψ =

Σ11 Σ12 Σ13 Σ14 Σ15
* −γ 2Ιq 0 0 Σ25

* * −Ιn 0 0
* * * −Ιm 0
* * * * −Ιr

%

&

'
'
'
'
'
'
'

(

)

*
*
*
*
*
*
*

 and 

Π = Bu
TP 0 0 0 0"

#$
%
&'
T

, Θ = 0 FEw 0 0 0"
#

$
% . 

Employing the well-known bounding inequality in (12) 
yields 

Ψ +ΠTΘ+ΘTΠ <Ψ +ΠTZ −1Π+ΘT Z −1( )
−1
Θ < 0  (13) 

Applying Schur complement to (13) allows to obtain the 
BMI given in (4). If w(t) = 0 , is guaranteed if (8) is ensured 
which indicates that system (3) is asymptotically stable 
implying that the aforementioned first condition of the 
objective of the present work is satisfied. Integrating both 
sides of (9) from 0 to ∞  leads to obtain 

!V (x(t))dt
0

∞

∫ =
t→∞
limV (x(t))−V (x(0))

< −zT (t)z(t)+γ 2wT (t)w(t)%& '(dt
0

∞

∫
  (14) 

Assuming that x(0) = 0 , thus yielding V (x(0)) = 0  and as 

t→∞
limV (x(t))> 0 , we obtain 

zT (t)z(t)dt
0

∞

∫ = z(t)
2

2
< γ 2 w(t)

2

2
= γ 2 wT (t)w(t)dt

0

∞

∫  (15) 

As a result, the condition (2) [11] of the objective of the 
present work is also achieved as shown in (15). This 
completes the proof.  
If we assume that the SOF gain matrix is fixed, then the 
following Corollary is presented for finding a minimum 
allowable attenuation rate of γ . 
Corollary 1. Given a positive scalar γ > 0  and a matrix 
F ∈ℜm×p , if the matrix 0 < PT = P ∈ℜn×n  satisfying the 
linear matrix inequality of (8) then the controller in (2) with 
F  becomes an SOF H∞  controller for system (1), (2). 
Proof. If F  is fixed, then the matrix inequality in (8) 
becomes an LMI which then follows with the proof of 
Theorem 1 from (5) to (9). 
Note that the synthesis condition for a stabilizing SOF H∞  
controller given in (4) is not convex, we shall consider the 
use of an iterative algorithm to resolve the feasibility 
problem of (4). We can find a matrix 0 < LT = L ∈ℜn×n  such 
that 

−P Ιn +BuBu
T( )P ≤ −L      (16) 

The inequality in (16) is equivalent to  
L−1 ≥ P−1 Ιn +BuBu

T( )P−1     (17) 

Applying Schur complement to (17) yields 

L−1 P−1

* Ιn +BuBu
T

#

$
%
%

&

'
(
(
≥ 0     (18) 

Introducing new variables M , X  such that M = L−1 , 
X = P−1  allows to rewrite (18) 

M X
* Ιn +BuBu

T

"

#
$
$

%

&
'
'
≥ 0     (19) 

In a similar manner, there exists a real and symmetric and 
positive definite matrix 0 <QT =Q ∈ℜm×m  such that 
−Z −1 ≤ −Q  which is equivalent to Q−1 − Z ≥ 0  and by Schur 
complement, the former inequality is satisfied equivalently 
by  

N Z
* Z

!

"
#

$

%
&≥ 0     (20) 

where N  is introduced such that N =Q−1 . Now we employ 
the well-known cone complementary technique [12] which 
leads us to present the following nonlinear minimization 
algorithm by replacing the original nonconvex feasibility 
condition with some LMI conditions as follows: 
 

Minimize trace(LM +PX)+ trace(QN )   

subject to (19), (20), L Ιn
* M

"

#
$
$

%

&
'
'
≥ 0 , P Ιn

* X

"

#
$
$

%

&
'
'
≥ 0 , 

Q Ιm
* N

"

#
$
$

%

&
'
'
≥ 0 , and 

Ψ PBu 0
* −Z Ew

TFT

* * −Q

#

$

%
%
%
%

&

'

(
(
(
(
−P Ιn+BuBu

T( )P→−L

< 0       (21) 

As a result, once we obtain a solution of 2n+m  for the 
aforementioned minimization problem, we shall conclude 
that the linear time-invariant system with (2) is 
asymptotically stable within the context of H∞  control via 
achieving a minimum attenuation rate of γ  by employing a 
similar form of algorithm whose detals are outlined in [11]. 

IV. NUMERICAL RESULTS 
We now present an example from the literature for the 
application of the proposed stabilizing SOF H∞  controller 
along with a minimum achieved attenuation rate of γ . 
Example 1: We shall let the parameters of system (1) 
described as  
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A =

−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 0.3681 −0.7070 1.4200
0 0 1.0000 0

"

#

$
$
$
$

%

&

'
'
'
'

,  

Bw =

1 0 0
0 0 0
0 0 0
0 0 0

!

"

#
#
#
#

$

%

&
&
&
&

, Bu =

0.4422 0.1761
3.5446 −7.5922
−5.5200 4.4900
0 0

"

#

$
$
$
$

%

&

'
'
'
'

,  

Cz =
0 1 0 0
0 0 0 1

!

"
#

$

%
& , Dw =

0.5 0 0
0 1 0

!

"
#

$

%
& ,  

Du =
1 0
0 1

!

"
#

$

%
& , Cz =

1 0 0 0
0 1 0 0

!

"
#

$

%
& ,  

Ew =
0 0.1 0
0 0 0.1

!

"
#

$

%
&  

Utilizing Theorem 1 and Corollary 1, we have resolved the 
feasibility problem for a suboptimal minimum allowable 
attenuation rate of γ  shown in Table I. In order to make a 
comparison with a full-order controller that is when 
u(t) = Kx(t)  where K ∈ℜm×n  is utilized, the H∞  
performance is also presented in Table I. It can be seen that 
the H∞  performance of the proposed reduced-order state-
feedback that is SOF controller is quite close to that of a 
full-order state-feedback controller. In other words, though 
using few number of state variables in the construction of 
the feedback controller and thus reducing the cost of the 
control input, we notice that the proposed controller is still 
capable of exhibiting almost equivalent level of H∞  
performance. Moreover, the entries of the static output 
feedback gain matrix, F  is significantly smaller than those 
of the state-feedback gain matrix, K . 
 

TABLE I.  MINIMUM ALLOWABLE ATTENUATION RATE 

Methods γ , F /K  
Theorem 1 1.5097, 

F = −0.1144 −1.3906
−0.0986 2.3959

"

#
$

%

&
'  

Corollary 1 with 

F = −0.1144 −1.3906
−0.0986 2.3959

"

#
$

%

&
'

 

1.1741  

Full-order state feedback 
controller 

1.1104, 

K = −697.056 48.6121
−55.5743 4.0701

"

#
$  

         52.7125 383.88
4.3048 29.8743

!

"
#  

V. CONCLUSIONS 

This note has investigated an H∞  reduced-order SOF 
controller on the basis of Lyapunov stability theory. The 
synthesis of a stabilizing H∞  SOF controller has been 
accomplished by employing the cone complementary 
approach for the very first time. Utilizing a linearization 
approach along with an iterative cone complementary 
technique has allowed to introduce a set of LMI conditions 
replacing the original BMI condition. An example has been 
taken into account for the application of the developed 
method. The numerical results have clearly shown that the 
proposed stabilization method has yielded an H∞  
performance remaining comparably quite close to that 
achieved by the use of a full-order state-feedback controller. 
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